About is fuzzer and fuzzing

Fuzz testing or fuzzing is a software testing technique, often automated or semi-automated, that involves providing invalid, unexpected, or random data to the inputs of a computer program. The program is then monitored for exceptions such as crashes, or failing built-in code assertions or for finding potential memory leaks. Fuzzing is commonly used to test for security problems in software or computer systems.
The term first originates from Barton Miller at the University of Wisconsin 1988. Similar techniques have been used in the field of quality assurance, where they are referred to as robustness testing, syntax testing or negative testing.
There are two forms of fuzzing program; mutation-based and generation-based, which can be employed as white-, grey- or black-box testing. File formats and network protocols are the most common targets of testing, but any type of program input can be fuzzed. Interesting inputs include environment variables, keyboard and mouse events, and sequences of API calls. Even items not normally considered "input" can be fuzzed, such as the contents of databases, shared memory, or the precise interleaving of threads.
For the purpose of security, input that crosses a trust boundary is often the most interesting. For example, it is more important to fuzz code that handles the upload of a file by any user than it is to fuzz the code that parses a configuration file that is accessible only to a privileged user.
Techniques
Fuzzing programs fall into two different categories. Mutation based fuzzers mutate existing data samples to create test data while generation based fuzzers define new test data based on models of the input.
The simplest form of fuzzing technique is sending a stream of random bits to software, either as command line options, randomly mutated protocol packets, or as events. This technique of random inputs still continues to be a powerful tool to find bugs in command-line applications, network protocols, and GUI-based applications and services. Another common technique that is easy to implement is mutating existing input (e.g. files from a test suite) by flipping bits at random or moving blocks of the file around. However, the most successful fuzzers have detailed understanding of the format or protocol being tested
The understanding can be based on a specification. A specification-based fuzzer involves writing the entire array of specifications into the tool, and then using model-based test generation techniques in walking through the specifications and adding anomalies in the data contents, structures, messages, and sequences. This "smart fuzzing" technique is also known as robustness testing, syntax testing, grammar testing, and (input) fault injection.[10][11][12][13] The protocol awareness can also be created heuristically from examples using a tool such as Sequitur. These fuzzers can generate test cases from scratch, or they can mutate examples from test suites or real life. They can concentrate on valid or invalid input, with mostly-valid input tending to trigger the "deepest" error cases.
There are two limitations of protocol-based fuzzing based on protocol implementations of published specifications: 1) Testing cannot proceed until the specification is relatively mature, since a specification is a prerequisite for writing such a fuzzer; and 2) Many useful protocols are proprietary, or involve proprietary extensions to published protocols. If fuzzing is based only on published specifications, test coverage for new or proprietary protocols will be limited or nonexistent.
Fuzz testing can be combined with other testing techniques. White-box fuzzing uses symbolic execution and constraint solving. Evolutionary fuzzing leverages feedback from code coverage, effectively automating the approach of exploratory testing.

0 comments:

Post a Comment